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Disruption of Cortical Association Networks in Schizophrenia
and Psychotic Bipolar Disorder
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D elusions, hallucinations, and formal thought disor-
der, as seen in a range of psychotic disorders (includ-
ing schizophrenia, schizoaffective disorder, and psy-

chotic bipolar disorder), are widely assumed to result from
breakdown in information processing across large-scale dis-
tributed brain networks. Multiple brain networks have been
implicated in the functional deficits observed in schizophre-
nia and bipolar disorder. Recent attention has focused on ab-
normalities in the default network, which is implicated in pro-
cessing internal stimuli and representations of the self. Default
network abnormalities have been discovered in a range of neu-
ropsychiatric conditions, raising the possibility that this dys-
function could represent a common substrate for mental

illness.1,2 However, other systems are also affected in schizo-
phrenia, with abnormalities in the dorsolateral prefrontal cor-
tex perhaps the best characterized,3-8 supporting the notion
that multiple brain networks are functioning abnormally in psy-
chotic disorders.

Despite much progress, it remains unclear whether a single
organizing principle underlies network abnormalities in psy-
chotic disorders. For example, does brain network dysfunc-
tion occur piecemeal in schizophrenia and bipolar disorder be-
cause of a shared but broadly distributed mechanism, or is it
better explained by damage to key control systems?9,10 The
frontoparietal control network spans portions of the dorsolat-
eral prefrontal cortex, dorsomedial prefrontal cortex, lateral
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parietal cortex, and posterior temporal cortex and correspond-
ing portions of the striatum11 and cerebellum.12 Situated be-
tween the default and dorsal attention networks,13,14 the fron-
toparietal control network is believed to play a crucial role in
goal-directed planning14 and the application of complex, nested
rules.15,16 One hypothesis is that this network serves as a bridge
between the 2 distinct modes of information processing sub-
served by the default network (ie, memory and other self-
oriented processing) and the dorsal attention network (ie, spa-
tial and other externally oriented stimuli). As a result,
disruption of the frontoparietal control network might result
in widespread changes to cortical information processing re-
flected across multiple brain networks.2

Magnetic resonance imaging (MRI)–based techniques in
humans suggest broad breakdowns in cortical functional or-
ganization, reduced local network connectivity, reduced modu-
lar structure, and increased global network robustness in
schizophrenia.17-20 Although consistent with some degree of
widespread network dysfunction, other studies21 highlight
preferential breakdown in certain cortical territories. For in-
stance, Fornito et al21 probed network function in schizophre-
nia in the context of a working memory task. They found evi-
dence of task-by-disease interaction effects that overlap
substantially with frontoparietal control network regions.
Moreover, the schizophrenia imaging literature has classi-
cally characterized the hypofrontality of psychosis on the ba-
sis of positron emission tomographic abnormalities that are
most pronounced in the lateral prefrontal cortex.7,22,23 We ex-
plored network dysfunction using a novel approach that ex-
amined functional connectivity profiles at rest across the en-
tire cerebral cortex. First, we studied a large sample of patients
with a psychotic disorder. Second, we examined shifts in the
strength and nature of interactions between functionally de-
fined brain regions rather than comparing brain activation pat-
terns or relying on anatomically defined cortical territories.
Third, our study sample was largely recruited from inpatient
psychiatric units where participants displayed particularly
acute disease (most of which remained acute at scan time) and
took several steps to rule out potential head movement con-
founders that can complicate the interpretation of studies using
samples of patients with acute disease. Our analyses re-
vealed disruption across several brain networks in patients with
a psychotic disorder relative to healthy controls, with evi-
dence of highly significant disruption of the frontoparietal con-
trol network. Frontoparietal network disruption was evident
transdiagnostically and was independent of data quality, sup-
porting the hypothesis that disruption to key control struc-
tures may represent a common biological substrate central to
the pathophysiology of psychosis.

Methods
Functional MRI (fMRI) data were collected from 100 patients
(28 with schizophrenia, 32 with schizoaffective disorder, and
40 with bipolar disorder with psychosis) and 100 controls at
rest with eyes open from December 2009 to October 2011.
Analyses were designed to identify differences between pa-

tients and controls in the functional connectivity profiles across
the cerebral cortex without imposing prior assumptions about
the network-specific location of effects.

Participants
Participants’ demographic and clinical characteristics are sum-
marized in eTable 1 in the Supplement. See eMaterials in the
Supplement for details of participant recruitment and char-
acterization.

Image Acquisition
All imaging data were collected on 3-T Tim Trio scanners (Sie-
mens) with a 12-channel phased-array head coil, using VB17
as the console version. Functional data were acquired using a
gradient-echo echoplanar imaging sequence sensitive to blood
oxygenation level–dependent contrast. Participants were in-
structed to remain still, stay awake, and keep their eyes open.
No fixation image was used, but patients were monitored via
eye tracking video to ensure that eyes remained open during
functional scans. The echoplanar imaging parameters were as
follows: repetition time, 3000 milliseconds; echo time, 30 mil-
liseconds; flip angle, 85°; 3 × 3 × 3-mm voxels; field of view,
216; and 47 axial sections collected with interleaved acquisi-
tion and no gap. Each functional run lasted 6.2 minutes (124
time points). A total of 1 to 2 runs were acquired per partici-
pant (mean of 1.39 for controls and 1.40 for patients). Whole-
brain coverage was achieved with sections aligned to the an-
terior commissure–posterior commissure plane using an
automated alignment procedure, ensuring consistency among
participants.24 Structural data included a high-resolution, mul-
tiecho, T1-weighted, magnetization-prepared, gradient-echo
image,25 which allows increased contrast through weighted av-
eraging of the 4 derived images.

Image Preprocessing and Functional-Structural
Data Alignment
See eMaterials in the Supplement for details.

Region Definition and Comparison Between Groups
Primary analyses began with a highly reliable cortical parcel-
lation derived from the fMRI data of 1000 healthy controls.26

In this approach, the cortical mesh is parcelated into k sets of
vertices on the basis of similar functional connectivity pro-
files across 1175 vertices spaced approximately 16 mm apart and
uniformly distributed across each cerebral hemisphere. We
then defined a set of 122 cortical regions composed of 61 roughly
symmetric territories in the left and right hemispheres by se-
lecting vertices on the sphere with respect to network bound-
aries, sulcal patterns, and confidence maps.26

We computed the Pearson correlation coefficient be-
tween each regional fMRI time course, averaged across all ver-
tices within the region, and the mean fMRI time course for ev-
ery other region (matrix plots, Figure 1, Figure 2A, and
Figure 3C; eFigure 1 in the Supplement). We also computed the
Pearson correlation coefficient between the mean fMRI time
course of a region and the time courses of all other vertices
across the cortical mantle (surface plots, Figure 3 A and B). To
compare regional correlation in the 2 groups, correlation val-
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ues were z-transformed to increase normality of the correla-
tion distribution and then compared using an analysis of vari-
ance after linear regression of age, sex, race, and handedness.
All tests survived correction for multiple comparisons using
a family-wise error rate (FWER; Bonferroni procedure) of
P < .05 or false discovery rate (FDR) of q < 0.05.

To supplement the primary analyses, leveraging 122 re-
gions defined using healthy control data, we applied a previ-
ously described26 clustering approach on the independent pa-
tient and control group blood oxygenation level–dependent
data. This analysis grouped vertices into 7 nonoverlapping net-
works based on similarity of fMRI connectivity profiles (see
eMaterials in the Supplement for details). In addition to com-
paring parcellations in full (n = 100) groups of patients and con-
trols, we separated patients and controls into high- and low-
quality data groups (n = 50) using a median signal-to-noise ratio
split (see eTable 2 in the Supplement) and applied the cluster-
ing approach independently to each group.

Results
Functional Connectivity Across the Cerebral Cortex
in Psychosis
Functional connectivity matrices derived from 100 patients and
100 controls are depicted in Figure 1, with regional interac-
tions organized into intrinsic left and right hemispheric cor-
tical networks. Controls (Figure 1A) and patients (Figure 1B)
had broadly similar network connectivity patterns, with each
network showing the expected pattern of high within-
network and low between-network correlation.

To examine the effects of a psychotic disorder on functional
connectivity, we compared z-transformed Pearson correlation
values in the 2 groups for all 3660 (61 × 60) pairwise regional
interactions (excluding unity interactions) using a regression
model that partialed out the effects of age, sex, race, and hand-
edness. Similar results were obtained when education and data
quality (signal-to-noise ratio) were included in the model (data
not shown). Residual differences between the 2 groups are dis-
played in Figure 2A for the full set of intrahemispheric interac-
tions. The pattern of cortical functional connectivity differences
revealed psychosis-related reductions in correlation between
regions that spanned several functional networks, including the
frontoparietal control, default, and ventral attention networks.
Interhemispheric correlation differences showed a similar pat-
tern (see eFigure 1 in the Supplement).

Across the set of 3660 possible intrahemispheric connec-
tions, 97 (2.7%) had a significant difference between the 2
groups (FWER-corrected P < .05, corresponding to an uncor-
rected P = 1.4 × 10−5). Of these, psychosis-related reductions
in regional correlation (n = 34 of 97) occurred almost exclu-
sively (n = 33 of 34) between regions located within the same
network (eg, control B to control B) or immediate hierarchical
cluster of networks (eg, control A to control B) (see eMaterials
in the Supplement for details on the control and other net-
works). By contrast, all 63 psychosis-related increases in re-
gional correlation occurred among between-network interac-
tions that are negatively correlated at rest (ie, negative
correlations between these regions became less negative in the
psychotic sample). This pattern held when using a less strin-
gent statistical criterion (FDR-corrected q < 0.05, correspond-
ing to an uncorrected P = 7.8 × 10−3).

Figure 1. Functional Connectivity Correlation Matrices in Patients and Controls
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Each 61 × 61 grid shows the Pearson correlation between resting blood
oxygenation level–dependent activity in intrahemispheric regional pairs for
controls (A) and patients (B). Regions are ordered based on their network
groupings adapted from Yeo et al.26 Diagonal white lines represent network

boundaries. DorsAttn indicates dorsal attention; L, left hemisphere; R, right
hemisphere; Sal, salience; SomMot, somatomotor; and VentAttn, ventral
attention.
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Psychosis-related differences in functional connectivity oc-
curred across several networks but were particularly marked
for connections that involved the frontoparietal control net-
work. This effect was evident for within-network reductions
in connectivity, as depicted in Figure 2B using a Manhattan plot,
which shows the statistical significance of each regional in-
teraction difference for all within-network findings (for Man-
hattan plot of all interactions, see eFigure 2 in the Supple-
ment).

We next considered the differences for a higher-
resolution parcellation of the cerebral cortex into 17 net-
works (Table, eFigure 3 in the Supplement). This analysis re-
vealed that in the second component of the frontoparietal

control network (referred to here as the control B network), 12
of 20 possible interactions had significantly reduced correla-
tion in patients with psychoses (FWER-corrected P < .05; 17 of
20 using FDR correction). Of the other 17-network compo-
nents, no other network had more than 2 within-network dif-
ferences significant at the more stringent threshold, and only
the ventral somatomotor network had a comparable propor-
tion with 1 significant of a possible 2 interactions (see eFigure
3 in the Supplement for the number of significant differences
across all network pairs). When a less conservative statistical
threshold (FDR) was used, patients displayed reduced integ-
rity in other networks, including ventral attention, salience,
and default (Table). Permutation testing revealed that effect
sizes for connections that involved the control B network were
greater than those found in ventral attention (P = .001), sa-
lience (P < .001), or control A (P = .001), 3 network compo-
nents that also had a number of significant differences at the
less stringent threshold. Compared with control B, effect sizes
that involved default network components (B and C) were not
found to be significantly different (P > .10); however, the small
number of possible connections that involved these compo-
nents suggests that these tests likely were not adequately pow-
ered to detect such a difference.

Frontoparietal Control Network Disruption in Psychosis
To further explore the nature and anatomical extent of func-
tional connectivity changes in the frontoparietal control net-
work, we conducted a conventional seed-based analysis for 10
control network regions to visualize correlation differences be-
tween patients and controls across the whole cortical surface
(Figure 3). We examined 5 bilateral sets of regions that com-
prised the control B component of the frontoparietal control
network26: medial posterior prefrontal cortex, lateral ante-
rior prefrontal cortex, temporal cortex, lateral posterior pre-
frontal cortex, and inferior parietal lobule. By examining dif-
ference maps derived from these 10 seed regions and their
spatial overlap on the cortical surface, we confirmed that the
differences in functional connectivity were consistent across
multiple regions of the frontoparietal control network and
largely confined to reductions in correlation between seed re-
gions and other regions of the control A and control B net-
works. Results from seed-based analyses for the full set of 122
regions of interest are depicted in a supplemental animation
(Video).

Cortical Network Parcellations
We next sought to address 2 potential confounders in our study
design that could have accounted for our finding of preferen-
tial control network disruption. First, our main analysis re-
lied on a functional parcellation derived exclusively from
healthy participants26; therefore, it remained possible that
subtle shifts in location or boundaries of selected regions might
explain apparent reductions in correlation strength due to spa-
tial misregistration between healthy and patient parcella-
tions. Second, although we explicitly selected control partici-
pants on the basis of matched data quality (and found the 2
groups to have moved similar amounts [Table]), subtle differ-
ences in the distribution of head motion and/or data quality

Figure 2. Functional Connectivity Differences Between Patients
and Controls
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A, The 61 × 61 grid shows the differences in resting blood oxygenation
level–dependent correlation between controls and patients for each
intrahemispheric regional pair. Differences were obtained by an analysis of
variance of z-transformed Pearson correlation values after linear regression of
the effects of age, sex, race, and handedness. Regions are ordered based on
their network groupings adapted from Yeo et al.26 Diagonal white lines
represent network boundaries. B, Manhattan plot showing associated
network-wide P values of psychosis-related differences in functional
connectivity. The y-axis shows the –log10 P values of 240 within-network
regional pairs, and the x-axis shows their network positions. The horizontal red
line represents the threshold of P = 1.37 × 10−5 for Bonferroni-corrected
significance; the horizontal blue line represents the threshold of P = 7.8 × 10−3

that corresponds to the false discovery rate (q < 0.05). See Figure 1 legend for
explanation of abbreviations.
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in 2 comparison groups might still lead to idiosyncratic, geo-
graphically distributed patterns of correlation difference.27-29

Therefore, we conducted a second analysis to compute the
7-network cortical network parcellation from patients and con-
trols independently and also examined the solutions for 2 key
subgroups of study participants with low- and high-quality
data: (1) the 50 control participants with the lowest-quality
functional scans and (2) the 50 patients with the highest-
quality scans. This analysis was thus an explicit attempt to pit
data quality against patient-control status to understand
whether our findings persisted even when data quality was
higher in the patient sample than in controls. Compared with
patients with low signal-to-noise ratio, patients with high SNR
had significantly lower positive scores on the Positive and Nega-
tive Syndrome Scale (15.8 vs 18.7, P = .04) and lower Youth Ma-
nia Rating Scale scores (12.6 vs 18.1, P = .008) but were other-
wise similar (see eTable 2 in the Supplement).

eFigure 4 in the Supplement shows the parcellation derived
from these 2 key subgroups and, for reference, the parcellation
derivedfrom1000healthyparticipants(eFigure4AintheSupple-
ment, adapted from Yeo et al26). Across both medial and lateral
cortical surfaces, the parcellation derived from the low-quality
data controls (eFigure 4B in the Supplement) closely matched the
reference parcellation (eFigure 4A in the Supplement), whereas
theparcellationderivedfromthehigh-qualitydatapatients(eFig-
ure 4C in the Supplement) showed a qualitatively different pat-
tern: vertices previously assigned to the frontoparietal control
network were assigned to other nearby network clusters. We did
not detect a systematic pattern of reassignment of vertices as-
signed to the frontoparietal control network to a single other net-
work. Because the parcellation procedure specified a priori a so-
lution with 7 networks, the somatomotor network was divided
into dorsal and ventral segments.

These results, together with the parcellation findings ob-
tained on the full (n = 100) data sets (data not shown), pro-
vide confirmatory evidence of frontoparietal control net-
work disruption that seems to be independent of the selection
of control group and data quality. These findings support our
interpretation that connectivity among nodes of the fronto-
parietal control network was altered in the psychotic group and
not the result of regional misregistration between patient and
control data sets due to subtle changes in region positions or
boundaries. We explored this further by visualizing the cor-
relation matrices obtained from patients and controls as spring-
loaded graphs, which depict the correlation among nodes spa-
tially (Figure 4). Although a full-graph theoretical analysis is
beyond the scope of the present study, this illustration pro-
vides an intuitive sense for how network connectivity changed
in the patient group: nodes from the control B network are less
clustered. Thus, although differences in data quality and in-
direct influences on effective spatial smoothing always re-
main a concern in between-group fMRI studies,30 our main
findings withstand tests of known confounds.

Relationship to Diagnosis, Active Symptoms, or Treatment
We next examined whether the pattern or extent of frontopa-
rietal control network disruption was related to DSM-IV diag-
nosis or other clinical variables. Mean correlation between all

Figure 3. Network Disruptions in the Distributed Regions of the
Frontoparietal Control Network
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A, Functional connectivity differences for the 4 lateral regions in the B
component of the frontoparietal network, shown using a conventional
seed-based approach. Maps are color-coded based on group differences in
z-transformed Pearson correlation (controls-patients), computed between each
mean regional time course and the time course at every vertex on the cortical
mesh and thresholded for significant differences (P < .01 uncorrected). As
above, differences were obtained after linear regression of the effects of age,
sex, race, and handedness. B, Conjunction maps showing the degree of overlap
in thresholded (P < .01) functional connectivity difference maps for the 5 left
hemisphere regions (regions shown in A and PFCmp) within the control B
network shown on lateral (left) and medial (right) inflated views of the cerebral
cortex. Green and white lines indicate boundaries of control A and control B
regions, respectively. C, Functional connectivity matrix for the 14 left and right
hemisphere regions of the frontoparietal control network. Bold text indicates
control B regions. Diagonal lines represent boundaries among the A, B, and C
components of the frontoparietal control network. CingC indicates the C
component of the cingulate gyrus; IPL, inferior parietal lobule; IPS, intraparietal
sulcus; OFC, orbitofrontal cortex; PFCd, dorsal prefrontal cortex; PFCla, lateral
anterior prefrontal cortex; PFClp, lateral posterior prefrontal cortex;
PFCmp, medial posterior prefrontal cortex; PostTemp, posterior temporal;
Precun, precuneus; and Temp, temporal.
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regional pairs within control A, within control B, and be-
tween control A and control B were compared between con-
trols (n = 100), patients with bipolar disorder (n = 40), and pa-
tients with schizophrenia or schizoaffective disorder (n = 60).
As observed at the psychotic disorders group level, mean cor-
relation among regions of the frontoparietal control B net-
work was significantly greater (P < .01) in healthy partici-
pants (r = 0.494) than in patients with bipolar disorder with
psychosis (r = 0.405) or patients with schizophrenia or schi-
zoaffective disorder (r = 0.411; Figure 5). The pattern of fron-
toparietal network disruption displayed consistency across the
patient groups (Figure 5; for full grid, see eFigure 5 in the
Supplement). We did not discover any significant relation-
ships in a series of demographic and clinical variables and our
findings (see eMaterials in the Supplement).

Discussion
In this study, we examined whether common functional brain
network abnormalities were present in patients with schizo-
phrenia and psychotic bipolar disorder. To capture and com-
pare the integrity of regional and network-level interactions
across the cerebral cortex, we examined spontaneous resting-
state hemodynamic fluctuations in 122 distinct cortical re-
gions comprising 17 networks, the stability of which had been
previously established in the functional connectivity profiles
from 1000 healthy adults.26 Our analyses identified a pattern
of disrupted connectivity consistent with pronounced disrup-
tion of the frontoparietal control network and with less marked
aberrant connectivity within and across other networks. We
confirmed this disruption of the frontoparietal control net-
work in a separate clustering analysis, in which we compared
the cortical parcellation in subgroups of patients and controls
that explicitly controlled for data quality. Together, these find-
ings indicate that the frontoparietal control network is dis-
rupted in multiple psychotic disorders.

Abnormal connectivity within and among the brain’s as-
sociative networks has been a central theme in efforts to un-
derstand the etiology of psychosis since Bleuler46 first coined
the term schizophrenia in 1911 (Greek for a split mind). A sub-
stantial literature indicates disrupted functional connectiv-
ity in schizophrenia and bipolar disorder across multiple brain
networks,1,19,31-37 which has been reviewed extensively.20,38 Our
results suggest that psychosis is associated with a disruption
in the control architecture needed to mediate between modes
of information processing, possibly resulting in inappropri-
ate activation of other networks, including the default net-
work. This disruption might lead to blurring of the normally
strongly defined boundary between internally and externally
oriented processing.2,39 Depending on which internal and ex-
ternal processes are currently engaged, control network dis-
ruption might in turn result in a heterogeneous pattern of mal-
adaptive thoughts and behaviors that varies during the illness
and among individuals.1

Our findings are largely compatible with the existing
schizophrenia neuroimaging literature, particularly the task-
based literature about abnormalities in cognitive control and
context processing.40-42 Although previous studies40,42,43 have
focused on dysfunction in the dorsolateral prefrontal compo-
nent of this network, our findings indicate that this network
is affected across its frontal, parietal, temporal, and medial pre-
frontal components. Notably, the distributed nature of dys-
function is consistent with other studies19 that have reported
results from whole-brain analyses of task-based data. Al-
though nodes within this network have previously been im-
plicated in psychotic disorders, our work indicates that the dis-
ease-related abnormalities are preferential to the territory of
an independently defined functional network.

The present analyses do not indicate a selective frontopa-
rietal cortex disruption in specific psychotic disorders. Rather
these data support the view that the frontoparietal control net-
work may support the most diverse set of cognitive demands
impaired in multiple disorders. It is possible that selective net-

Table. Network Interactions Affected Significantly by Psychosisa

Cortical Network FWER P < .05 FDR q < 0.05 Total Mean (SD)
Visual central 0 0 2 −0.007 (0.004)

Visual peripheral 2 2 6 0.095 (0.105)

Somatomotor A 1 2 2 0.180 (0.004)

Somatomotor B 0 2 12 0.069 (0.039)

Dorsal attention A 0 2 6 0.073 (0.059)

Dorsal attention B 0 0 12 0.028 (0.042)

Ventral attention 1 20 70 0.080 (0.060)

Salience 1 9 20 0.083 (0.065)

Limbic 0 0 2 0.008 (0.004)

Control A 2 9 42 0.065 (0.066)

Control B 12 17 20 0.171 (0.087)

Control C 0 0 2 0.082 (0.013)

Default A 0 2 30 0.064 (0.050)

Default B 1 4 6 0.168 (0.055)

Default C 0 1 6 0.088 (0.024)

Default D 0 0 2 −0.012 (0.051)

Abbreviations: FDR, false discovery
rate; FWER, family-wise error rate.
a Values represent the number

significant of total possible
within-network interactions. Means
(SDs) reflect the difference in
correlation between controls and
patients across all regional
interactions for that network.
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work disruptions may be evident in more homogeneous pa-
tient samples. Along these lines, although it was not the em-
phasis of this study, we observed a unique pattern of connec-
tivity differences in our schizophrenic and bipolar disorder
subgroup analysis, although these differences failed to reach
statistical significance (see eFigure 5 in the Supplement). Note
that another group has recently reported differences in func-
tional connectivity between schizophrenia and bipolar
disorder,38 albeit using different methods for defining and com-
paring network correlations and using a less acute bipolar pa-
tient sample (eg, current psychosis among bipolar patients in
that study was 50% vs 78% in our study), which may help to
explain the reported differences.

In our findings, there was evidence that a subcompo-
nent of the frontoparietal control network, what we refer to
as control B, was particularly affected. Although few studies

have probed the specific functions of this network, a
review15 of the task-based fMRI literature suggests that
higher-order application recruits cortical territories in the
frontoparietal network, with the highest-order tasks activat-
ing territory most consistent with the control B component
of the network.45 The correspondence between these
higher-order task activations and the locations of reduced
resting connectivity in our psychotic sample suggests dys-
function in a network critical to the kind of nested cognition
that is particularly challenging for thought-disordered
patients and could give rise to complex delusions, halluci-
nations, and other misperceptions. In sum, our findings
provide a novel and comprehensive characterization of dys-
functional territories in the cerebral cortex of psychotic indi-
viduals that matches well with the core deficits observed in
these patients.

Figure 4. Spatial Network Model of 3 Cortical Association Networks in Psychosis
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Spring-loaded graphs showing selected nodes of the frontoparietal control
network, dorsal attention network, and default network in controls (A) and
patients (B). Node size is based on nodal degree; edge connection strength is
represented by grayscale value and line thickness. Controls had a more
segregated pattern clustering of frontoparietal and default networks
(represented with nonoverlapping colored halos); by contrast, patients had less
clustering within default and frontoparietal control networks and evidence of
extension of frontoparietal nodes into the default cluster (represented with
blended red-orange halos). FEF indicates frontal eye fields; InfParOcc, inferior
parieto-occipital; IPLa, lateral inferior parietal lobule; IPLp, posterior inferior

parietal lobule; PCC, posterior cingulate; pCUN, precuneus; PFCdA, dorsal
anterior prefrontal cortex; PFCdB, B component of dorsal prefrontal cortex;
PFCl, lateral prefrontal cortex; PFCm, medial prefrontal cortex; PFCmpA, A
component of medial posterior prefrontal cortex; PFCmpB, B component of
medial posterior prefrontal cortex; PostC, postcentral gyrus; PostTempOcc,
posterior temporal occipital; PrCv, ventral precentral gyrus; SupPar, superior
parietal lobule; Temp, temporal cortex; TempA, A component of temporal
cortex; TempB, B component of temporal cortex. See Figure 3 legend for
explanation of other abbreviations.
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Although the statistical criterion we used for our primary
analysis indicated the most differences outside the frontopa-
rietal network were not statistically significant in our sample,
there was evidence of dysfunction in other cortical networks
(eg, ventral attention network and default network). The pat-
tern we observed suggests that frontoparietal control disrup-
tion may be the most common and reliably observed across
psychotic samples because we observed it in a large but hetero-
geneous sample of psychotic patients but does not rule out the
possibility that it may be possible to subgroup patients with
particular symptom clusters or diagnoses and show pro-
nounced effects in other networks. In other words, our find-
ings predict that psychosis will be associated with particular
difficulty (and altered fMRI responses) on context-

dependent tasks but also any tasks that require frontopari-
etal control network–dependent shifts between internal and
external processing modes. This rationale may also explain why
we failed to detect any significant relationship between our
findings and specific clinical ratings; that is, in a large hetero-
geneous sample, biological differences shared across the group
could manifest differently in different clinical subgroups (eg,
due to other disruptions or compensations). An alternative pos-
sibility is that our findings indicate a shared vulnerability to
thought disorder (ie, a trait marker for psychosis) rather than
an indicator of current clinical state. Future work will be nec-
essary to leverage the statistical power afforded by high-
throughput imaging approaches to examine subgroup differ-
ences in network dysfunction.

Figure 5. Equivalent Disruption of Frontoparietal Control Network Connectivity in Bipolar Disorder and Schizophrenia
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Functional connectivity difference matrices for the 14 left and right hemisphere
regions of the frontoparietal control network shown for schizophrenic patients
relative to controls (A), bipolar patients relative to controls (B), and
schizophrenic patients relative to bipolar patients (C). Differences significant at
false discovery rate q < 0.05 are shown in each panel just to the lower right of

the unthresholded matrix. D, Histograms show the mean correlation between
components of the frontoparietal control network in controls and patients with
bipolar disorder or schizophrenia. Error bars denote SE. See Figure 3 and Figure
4 captions for explanation of other abbreviations.
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To our knowledge, our study is one of the largest resting-
state fMRI studies in a sample of individuals with a lifetime
history of psychosis, most of whom were inpatients and/or pa-
tients with acute psychosis at the time of the scan. We also in-
cluded data from patients that spanned DSM-IV diagnostic cat-
egories within the psychotic disorders. Our analysis included
all resting-state networks rather than being restricted to a lim-
ited number of a priori regions and networks. We directly ad-
dressed the potential confounders of head motion and scan
quality by matching control participants on the basis of signal-
to-noise properties of the functional scan and confirmed our
findings in an analysis in which data quality and patient sta-
tus were pitted against each other (ie, high-quality patient data
vs low-quality control data). We also used a recently devel-
oped functional parcellation strategy to compare regional cor-
relation across the entire cortex and then to rule out subtle re-
gional boundary shifts. We computed the functional
parcellation separately based solely on patient data.

The study has several limitations. First, combining data
from patients with schizophrenia and psychotic bipolar dis-
order could obscure differences in the biology of psychosis in
the 2 disorders38 and therefore might be viewed as a limita-
tion of our study design. Although the 2 disorders have some
unique features, the present study was designed to reveal
shared features of psychosis. Future studies adequately pow-
ered to detect connectivity differences within each diagnosis
will address the question of overlapping and unique sub-
strates for psychosis in different diagnostic entities. Second,
there were several commonalities among the patient sample
other than lifetime history of psychosis differentiating them
from controls, including current and past use of centrally ac-
tive medications, anxiety or distress, and mood distur-
bances. Thus, we cannot establish definitively whether fron-
toparietal network disruptions in this group were due to a
common neural phenotype or these other factors. Similarly
powered studies that examined unaffected relatives, unmedi-
cated patients, or medicated controls would be helpful in rul-

ing out these and other potential confounders. Third, we found
a small but significant difference between patients and con-
trols in educational history, with both patients and their
parents having a lesser educational background than con-
trols (by a mean of 1.74 years for patients and 0.8 years for
their parents). Given the potential relationship between the
frontoparietal control network and the types of higher cog-
nitive functions that would accompany scholastic achieve-
ment, this difference was potentially significant. However,
our results held even after adjusting for educational history,
and no correlation was observed between educational vari-
ables and frontoparietal control network integrity. Differ-
ences in education also could potentially be mitigated by
the fact that estimated IQ scores were similar in the 2
groups. Fourth, subcortical structures are known to play a
central role in the pathophysiology of psychotic disorders
and yet received minimal attention in this study, which
focused on disruptions to neocortical networks. This choice
was partly methodologic because our goal was to apply a
parcellation with which we have high confidence to this
patient population. Although our group and others have
made advances in applying parcellation strategies to sub-
cortical structures,11,44 we thought that applying them here
would be premature and somewhat beyond the scope of our
study. We are actively pursuing analyses that include sub-
cortical structures, which will be critical to our understand-
ing of the changes we have observed here, and expect dis-
ruptions observed in the neocortex to also be present in
other connected subcortical structures.

In conclusion, we identified the frontoparietal control net-
work as preferentially disrupted in psychosis. This finding per-
sisted even after controlling for the effects of data quality and
was present in subgroups of patients with schizophrenia and
psychotic bipolar disorder. Given this network’s putative role
in higher-order cognition, this disruption may underlie the
shared vulnerability to thought disorder that characterizes both
schizophrenia and affective psychosis.
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