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Polygenic risk of Alzheimer disease is
associatedwith early- and late-life processes

ABSTRACT

Objective: To examine associations between aggregate genetic risk and Alzheimer disease (AD)
markers in stages preceding the clinical symptoms of dementia using data from 2 large observa-
tional cohort studies.

Methods: We computed polygenic risk scores (PGRS) using summary statistics from the Interna-
tional Genomics of Alzheimer’s Project genome-wide association study of AD. Associations between
PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and b-amyloid)
were assessed within older participants with dementia. Associations between PGRS and hippocam-
pus volume were additionally examined within healthy younger participants (age 18–35 years).

Results:Within participants without dementia, elevated PGRSwas associatedwithworsememory (p
5 0.002) and smaller hippocampus (p5 0.002) at baseline, as well as greater longitudinal cognitive
decline (memory: p5 0.0005, executive function: p5 0.01) and clinical progression (p, 0.00001).
HighPGRSwas associatedwithAD-like levels of b-amyloid burden asmeasuredwith florbetapir PET
(p5 0.03) but did not reach statistical significance for CSF b-amyloid (p5 0.11). Within the younger
group, higher PGRS was associated with smaller hippocampus volume (p 5 0.05). This pattern was
evident when examining a PGRS that included many loci below the genome-wide association study
(GWAS)–level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS
was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms).

Conclusions: Effects related to common genetic risk loci distributed throughout the genome are
detectable among individuals without dementia. The influence of this genetic risk may begin in early life
and make an individual more susceptible to cognitive impairment in late life. Future refinement of poly-
genic risk scores may help identify individuals at risk for AD dementia. Neurology® 2016;87:481–488

GLOSSARY
Ab5 b-amyloid; AD5 Alzheimer disease;ADNI5 Alzheimer’s Disease Neuroimaging Initiative; CDR5 Clinical Dementia Rating;
CN5 clinically normal;GSP5 BrainGenomics Superstruct Project;GWAS5 genome-wide association study;HV5 hippocampus
volume; IGAP 5 International Genomics of Alzheimer’s Project; LD 5 linkage disequilibrium; MCI 5 mild cognitive impairment;
MMSE 5 Mini-Mental State Examination; PGRS 5 polygenic risk score; SNP 5 single nucleotide polymorphism.

The asymptomatic stage of Alzheimer disease (AD) is thought to last over a decade, during which the
pathophysiologic processes are under way in the absence of clinical symptoms.1 Given that current
clinical trials are testing whether antiamyloid therapies slow cognitive decline among clinically normal
individuals at risk for AD dementia,2,3 it is critical to understand the influence of risk factors before
overt symptoms of dementia are present.
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Genetic variants have a large influence in spo-
radic AD dementia, with heritability estimates
exceeding 60%.4 In addition to the APOE
gene,5 to date 21 common genetic variants have
been associated with AD in large genome-wide
association study (GWAS) meta-analyses.6

However, the effect sizes of these variants are
small (odds ratios,1.22), and recent work sug-
gests that numerous additional loci distributed
throughout the genome explain a much larger
portion of the variance than the select few that
surpass GWAS-level significance thresholds.7–9

For instance, GWAS-confirmed loci account
for 2% of the variance in discriminating patients
with AD dementia and controls, beyond the 6%
accounted for by APOE, whereas examination
across the remaining 2 million common genetic
variants explains an additional 25% of the var-
iance.9 Thus, aggregation across a large number
of loci is likely a more sensitive method to estab-
lish underlying genetic risk to AD dementia
than solely examining loci surpassing stringent
GWAS-level significance thresholds.

Although the accumulation of the b-amy-
loid (Ab) protein is likely a central event in
AD development,10 mechanistic pathways not
directly linked to Ab have been increasingly
implicated in common genetic risk loci of AD,
such as processes related to the immune sys-
tem and cytoskeletal function.11–14 Given the
involvement of nonamyloid pathways in com-
mon AD genetic risk loci, it is possible that
genetic variants influence AD markers early in
the lifespan, before amyloid accumulation has
begun.

We sought to derive measures of polygenic
risk based on the results from the recent large
meta-analysis of AD dementia from the Inter-
national Genomics of Alzheimer’s Project
(IGAP) and determine whether these poly-
genic risk scores (PGRS) were associated with
AD-relevant markers during the stages preced-
ing dementia among older participants, but
also early in the lifespan among younger par-
ticipants. Understanding the early influence of
genetic risk will provide important insights
into mechanisms of AD development
throughout the lifespan as well as improve
detection of at-risk individuals before clinical
symptoms and widespread neuronal damage
has ensued.

METHODS Participants. Our analyses included older clini-

cally normal (CN) participants, patients with mild cognitive

impairment (MCI), and patients with AD dementia from the

Alzheimer’s Disease Neuroimaging Initiative study (ADNI),15

as well as younger CN participants from the Brain Genomics

Superstruct Project (GSP)16,17 (table 1). Enrollment began in

2004 for ADNI phase 1 and in 2011 for ADNI phase 2. Enroll-

ment for the GSP occurred between 2008 and 2012. In brief, older

CN participants from ADNI had Mini-Mental State Examination

(MMSE) score$24, Clinical Dementia Rating (CDR) 0, and were

within the normal range on education-adjusted Logical Memory

delayed recall cutoffs. ADNI MCI had MMSE $24, CDR 0.5,

and fell below education-adjusted logical memory delayed recall

cutoffs. ADNI patients with AD dementia meet the National

Institute of Neurologic and Communicative Disorders and

Stroke–Alzheimer’s Disease and Related Disorders Association

criteria for probable AD, had memory complaints, MMSE 20–

26, and CDR $0.5. Diagnoses were determined using each

participant’s baseline visit (clinical progression from baseline was

not considered). ADNI1 participants were included in the current

analysis if they had genotyping data available and were of European

ancestry (n 5 166 AD, 332 MCI, and 194 CN). ADNI2

participants were included if they had genotyping data available,

were of European ancestry, underwent florbetapir PET, and were

not included in ADNI1 analyses (n 5 332 MCI and 173 CN).

GSP participants were healthy volunteers in a Boston area imaging

study and between 18 and 35 years old. GSP participants were

included if they had genotyping data available, were of European

ancestry, and had structural MRI data available (n 5 1,322).

Standard protocol approvals, registrations, and patient
consents. Institutional review boards approved study procedures

across participating institutions. Written informed consent was

obtained from all participants.

GWAS processing. Genotyping procedures are described else-

where for the ADNI18 and GSP.19 Genotyping data from the

Illumina Human610-Quad BeadChip was used for ADNI1,

Illumina Omni 2.5 M platform for ADNI2, and Illumina

Infinium Human OmniExpress for GSP. All analyses were

restricted to participants with non-Hispanic European ancestry,

as identified with multidimensional scaling analysis performed in

combination with the 1000 Genomes sample20 and performed

within each genotyping platform separately.

Standard quality control procedures were applied to GWAS

data using PLINK v1.9 (https://www.cog-genomics.org/plink2).

Individuals were excluded for missing genotype rates .5% and

sex inconsistency. Single nucleotide polymorphisms (SNPs) were

excluded if minor allele frequency was ,0.01, genotype call rate

was ,95%, Hardy-Weinberg Equilibrium deviation (p , 1 3

1026), and ambiguous strand information. Nongenotyped SNPs

were imputed using MiniMac35, with the 1000 Genomes Euro-

pean participants as the reference sample and following the Mini-

mac cookbook instructions.21

Computation of PGRS. We computed PGRS using PLINK’s

profile function, which computes the sum of reference allele

counts at each SNP weighted by the log odds ratio from the stage

1 analysis of the IGAP GWAS, which contrasted 17,008 patients

with AD dementia with 37,154 CN controls.6 Critically, the

summation was constrained to independent loci with an IGAP

stage 1 p value below a threshold. The independent loci were

identified using PLINK’s linkage disequilibrium (LD) clumping

procedure (with 0.5 as the LD threshold), which reveals corre-

lated sets of SNPs. LD clumping ensures that large blocks of

correlated SNP sets do not overwhelm the PGRS computation.
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To determine the appropriate p value threshold, we iterated over

a range of values (the GWAS-level significance threshold of p5 5

3 1028, p5 0.0001, p 5 0.001, p5 0.01, p 5 0.02, p5 0.03,

p5 0.04, p5 0.05, p5 0.10, p5 0.20, p5 0.30, p5 0.40, and

p 5 0.50). Conservative p value thresholds (e.g., p 5 5 3 1028)

result in fewer SNPs contributing to the PGRS, while liberal

p value thresholds (e.g., p 5 0.5) result in a large number of

contributing SNPs (table e-1 on the Neurology® Web site at

Neurology.org). For all primary analyses, chromosome 19 SNPs

were excluded to preclude any influence of the APOE gene.

However, we also repeated analyses using PGRS calculations that

included chromosome 19. Importantly, the ADNI participants used

in the current analysis were not included in the IGAP stage 1 analysis

that generated the summary statistics file. To select a PGRS for

subsequent analyses within CN and MCI, we examined the p value
threshold that best differentiated patients with AD dementia from

older CN participants within the ADNI1 sample. PGRS were

z-transformed based on the distribution of values within CN.

Ab markers. Associations with Ab were examined in 2 inde-

pendent groups without dementia from ADNI. First, we exam-

ined this association within a subset of ADNI1 participants with

CSF data22 (n5 272). Given the small sample size of this subset,

we additionally explored associations with Ab within 505 partic-

ipants without dementia who underwent florbetapir PET imag-

ing in ADNI2.23 Participants were only included in this analysis if

they were not used in the ADNI1 CSF analysis to ensure an

independent sample. Since ADNI1 and ADNI2 samples under-

went genotyping on different platforms, analyses were performed

separately within each group.

Structural MRI acquisition and processing. Acquisition and
processing of structural MRI scans have been described previ-

ously.19,24 A longitudinal Freesurfer version 4.3 pipeline was used

to extract hippocampus volume (HV) for ADNI1, while a cross-

sectional Freesurfer version 4.5 pipeline was used for GSP. HV

was adjusted by total intracranial volume and additionally

adjusted for coil type within GSP (12 vs 32 channel).

Statistical models. Statistical analyses were performed using R

v3.0 (http://www.r-project.org/). Linear mixed models were

used to assess baseline and longitudinal effects in cognitive

factor scores (memory and executive function)25,26 and HV

(mean neuropsychological follow-up 4.58 6 2.74 years; mean

follow-up for HV 2.97 6 1.22 years). Linear mixed models

included a random intercept and slope for each participant. Risk

of clinical progression (CN to MCI/AD or MCI to AD) within 3

years of follow-up was examined with logistic regression. Multiple

regression was used to assess the association between PGRS and

HV within GSP where only baseline data were available.

All analyses controlled for APOE4, age, and sex, as well as 5

principal components from a multidimensional scaling analysis to

account for population heterogeneity. Analyses within ADNI

participants without dementia additionally controlled for diagno-

sis (CN vs MCI). The interaction between each covariate and

time was included in linear mixed models. Education was con-

trolled in models examining cognition. The p values were 2-sided
and no multiple comparisons correction was performed.

RESULTS Participant demographics are listed in table
1. Given that the number of SNPs used to calculate
a PGRS is arbitrary (table e-1), we first examined the
ability of different PGRS iterations to discriminate
between 166 patients with AD dementia and 194 older
CN from ADNI1. Interestingly, discrimination
between patients with AD dementia and older CN
participants from ADNI1 dramatically increased
between very stringent p values and p 5 0.01, and
reached a plateau after p 5 0.01 (figure 1). Based on
this pattern, we examined a liberally defined PGRS
using the p 5 0.01 threshold in follow-up analyses.

Within the ADNI1 group without dementia (older
CN andMCI combined, n5 526), linear mixed mod-
els were conducted to assess associations with baseline
and longitudinal change in memory, executive func-
tion, and HV (table 2). There was a main effect of
PGRS on memory (p 5 0.002), such that elevated
PGRS was associated with worse baseline memory per-
formance (figure 2A). The main effect of PGRS on
baseline executive function was not significant (p 5

0.32; figure 2B). Finally, there was a main effect on
HV, such that higher PGRS was associated with smaller
baseline HV (p5 0.002, figure 2C). PGRS accounted

Table 1 Participant demographics

ADNI1, AD dementia ADNI1, no dementia ADNI2, no dementia GSP, younger CN

No. 166 526 (194 CN, 332 MCI) 505 (173 CN, 332 MCI) 1,322

% Female 44.6 38.2 46.1 53.3

Age, y, mean (SD) 75.8 (7.4) 75.3 (6.5) 73.5 (7.4) 21.5 (3.2)

Education, y, mean (SD) 14.9 (3.0) 15.9 (2.9) 16.3 (2.6) 14.7 (1.9)

% APOE41 66.3 45.1 38.0 23.8

Abbreviations: AD5 Alzheimer disease; ADNI5 Alzheimer’s Disease Neuroimaging Initiative; CN5 clinically normal; GSP5

Brain Genomics Superstruct Project; MCI 5 mild cognitive impairment.
Baseline and longitudinal change in cognition and hippocampus volume was examined within ADNI1 participants without
dementia. A subset analysis was performed within the ADNI1 participants without dementia to examine associations
between polygenic risk score (PGRS) and b-amyloid (Ab) status in the subset of this group that had CSF data available (n 5

272). Additional analyses examining PGRS vs Ab status was performed in an independent sample of participants without
dementia who underwent florbetapir scanning at ADNI2 (these participants were not used in the analysis relating CSF Ab
to PGRS). Within the ADNI1 sample, 26/526 participants were missing hippocampus volume data. The GSP cohort was
used to examine the association between baseline hippocampus volume and PGRS in a sample of young CN participants.
APOE41 participants carry at least 1 e4 allele.
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for 2.3% of the variance in baseline memory and 2.0%
of the variance in baseline HV.

Within these linear mixed models, the interaction
between PGRS and time was significant for bothmem-
ory (p 5 0.0005) and executive function (p 5 0.01),
such that higher PGRS was associated with greater rate
of decline across both domains (figure 2, D and E,
table 2). The association between PGRS and change
in HV did not reach statistical significance (p 5 0.06,
figure 2F). PGRS accounted for 3.2% of the variance
in longitudinal memory, 1.4% of the variance in lon-
gitudinal executive function, and 1.1% of the variance
in longitudinal HV.

Examination of clinical progression within 3 years
of follow-up (CN to MCI/AD or MCI to AD) re-
vealed progression in 15 of the 194 ADNI1 CN
and 143 of the 332 ADNI1 MCI. In a logistic regres-
sion model, PGRS was associated with increased risk
of progression within 3 years (p , 0.00001, table 2,
figure e-1).

Given that PGRS was significantly associated with
baseline HV, cognitive decline over time, and clinical
progression, models were repeated with PGRS and
baseline HV as simultaneous predictors of cognitive
decline and clinical progression. This analysis revealed

independent contributions of PGRS and baseline HV
to change in memory (PGRS: p 5 0.0041, HV: p ,
0.0001), change in executive function (PGRS: p 5

0.07, HV: p , 0.0001), as well as risk of clinical pro-
gression (PGRS: p 5 0.00004, HV: p , 0.0001).

We next examined associations between PGRS and
Ab in the subset of 272 ADNI1 participants without
dementia with CSF data available (table 2). Although
higher PGRS were associated with lower (e.g., more
AD-like) CSF Ab levels, this analysis did not reach
statistical significance (p 5 0.11, figure 3A). Given
the smaller sample size of this CSF analysis, we addi-
tionally examined an independent sample of 505 par-
ticipants without dementia who underwent florbetapir
PET imaging in ADNI2. This analysis revealed a sim-
ilar association such that elevated PGRS was associated
with greater (e.g., more AD-like) levels of florbetapir
Ab (p5 0.03, figure 3B). Across both analyses, PGRS
accounted for 1.0% of the variance in Ab levels.

Finally, we examined the association between
PGRS and cross-sectional HV within a large younger
cohort (age 18–30 years, n 5 1,322). This analysis
revealed a marginal association, such that higher PGRS
was associated with smaller HV (p 5 0.05; PGRS
explained 0.2% of the variance in HV).

All analyses were repeated using PGRS that
included chromosome 19 and revealed similar results
(table e-2). Analyses were also repeated using a more
conservative PGRS that only incorporated the smaller
set of loci meeting statistical significance in the large
IGAP meta-analysis (table 2, table e-2). Interestingly,
there were no significant associations with cognition or
biomarkers using this conservatively defined PGRS,
with the exception of baseline memory (p 5 0.01).

DISCUSSION Among older participants without
dementia, PGRS were associated with multiple AD
markers. Specifically, higher PGRS was associated with
worse memory, smaller HV, and AD-like levels of Ab
at baseline. We also found that higher PGRS was
associated with greater longitudinal change in both
memory and executive function, as well as elevated
risk of clinical progression. Within a large sample of
young clinically normal adults under age 35 years, we
found that higher PGRS was associated with smaller
HV, suggesting that an effect of aggregate genetic risk
is not specific to processes occurring in late life.
Importantly, this pattern of results was only present
when PGRS calculations incorporated many loci below
GWAS-level significance. Overall, these analyses
provide evidence that aggregate genetic risk of AD
dementia exerts effects that are detectable before the
clinical symptoms of dementia are present, even
among young adults.

The added sensitivity gained in our analyses by
summing across a large number of genetic loci is

Figure 1 Polygenic risk score (PGRS) discrimination between patients with
Alzheimer disease (AD) dementia and older clinically normal (CN)
participants

Multiple PGRS iterations were examined that incorporated different quantities of loci based
on p value significance thresholds from the large International Genomics of Alzheimer’s
Project (IGAP) meta-analysis. Significance is shown on the y-axis (negative log p value),
and corresponds to the independent contribution of PGRS in predicting diagnosis in our
analysis of Alzheimer’s Disease Neuroimaging Initiative patients with AD dementia com-
pared to CN participants (controlling for APOE4, age, sex, and 5 multidimensional scaling
principal components). The x-axis shows the p value threshold applied to the IGAP summary
statistics file to determine which single nucleotide polymorphisms (SNP) to include in each
PGRS iteration. The effect using a threshold of p5 0.01 is shown by the gray filled diamond.
The horizontal dashed line reflects the significance value corresponding to a conservative
PGRS that only incorporated 18 SNP that were significant in the IGAP meta-analysis.
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consistent with work examining heritability within
AD7–9 as well as studies investigating highly heritable
psychiatric disorders that are associated with risk loci
that individually exert small effects.27,28 This pattern
implies that restricting analyses to a small number of
risk loci provides a weak signal of underlying genetic
risk that is improved by aggregating effects across
many loci. Our results might further explain discrep-
ancies reported across exploratory GWAS studies of
AD markers. For instance, the top genome-wide sig-
nificant loci that emerged from an exploratory GWAS
analysis of AD pathologies (Ab plaques and neurofi-
brillary tangles) were not significant at a liberal statis-
tical significance threshold of p , 0.05 in the IGAP
GWAS contrasting AD dementia to CN,6,29 high-
lighting that the top loci surpassing GWAS level sig-
nificance thresholds in analyses examining different
AD phenotypes are likely to differ. Thus, although it
is necessary to apply stringent criteria in discovery
style GWAS analyses to reduce the incidence of
false-positives, it is highly likely that relevant signal
exists below these stringent criteria.9

Within older participants without dementia, PGRS
was associated with cognitive decline, highlighting that
elevated genetic risk influences longitudinal trajectories
even among individuals without dementia. This find-
ing is consistent with work across multiple laboratories
linking early cognitive decline to established AD risk
factors, such as elevated amyloid30 and the APOE4
genotype,31 as well as work showing an association
between cortical thickness and polygenic risk within

CN participants (even among Ab2 CN partici-
pants).32 However, our findings are at odds with a pre-
vious study that did not find an association between
liberally defined PGRS and cognitive decline among
a large sample of CN participants from the Cognitive
Aging Genetics in England and Scotland consortium.33

It is noteworthy that PGRS from that study was com-
puted using an older GWAS of AD dementia with
a much smaller discovery sample than the recent IGAP
GWAS used in our analysis (3,941 patients with AD
dementia vs 17,008 patients with AD dementia).6,34

The power of PGRS analyses is known to increase as
discovery sample size increases. Nevertheless, it will be
important to replicate the association between PGRS
and cognitive decline in cohorts beyond ADNI.

We also found that liberal PGRS was associated
with baseline HV within older adults without demen-
tia. Although the association between PGRS and Ab
in the subset of ADNI1 participants who had CSF
data available (n 5 272) did not reach statistical sig-
nificance (p 5 0.11), an independent analysis using
ADNI2 florbetapir data in a much larger sample of
participants without dementia (n 5 505) did reveal
a significant association between PGRS and Ab.
Importantly, the magnitude and direction of the
effect was identical across the 2 independent samples,
providing strong support for an association between
PGRS and Ab among individuals without dementia
and highlights the importance of large samples when
performing analyses linking genetics with biomarkers.
Although an association between Ab and PGRS was

Table 2 Main findings as well as repeated analyses using a conservative polygenic risk score (PGRS)

Liberal PGRS
(threshold 5 0.01)

Conservative PGRS
(IGAP loci only)

Analyses within older participants without
dementia (ADNI)

Baseline memory 20.077 (0.025); p 5 0.002a 20.069 (0.027); p 5 0.01a

Longitudinal memory 20.021 (0.006); p 5 0.0005a 20.002 (0.007); p 5 0.71

Baseline executive function 20.030 (0.030); p 5 0.32 20.029 (0.033); p 5 0.37

Longitudinal executive function 20.018 (0.007); p 5 0.01a 0.005 (0.008); p 5 0.53

Baseline hippocampus volume 2108.98 (34.86); p 5 0.002a 7.94 (38.13); p 5 0.84

Longitudinal hippocampus volume 27.02 (3.70); p 5 0.06b 24.73 (3.99); p 5 0.24

Progression to MCI/AD 0.49 (0.11); p , 0.00001a 0.10 (0.11); p 5 0.39

CSF Ab 24.75 (2.96); p 5 0.11 23.13 (3.07); p 5 0.31

Florbetapir Ab 0.021 (0.010); p 5 0.03a 0.009 (0.009); p 5 0.30

Analyses within younger CN participants (GSP)

Baseline hippocampus 233.20 (17.15); p 5 0.05a 214.32 (17.10); p 5 0.40

Abbreviations: AD5 Alzheimer disease; ADNI5 Alzheimer’s Disease Neuroimaging Initiative; CN5 clinically normal; GSP5

Brain Genomics Superstruct Project; IGAP 5 International Genomics of Alzheimer’s Project; MCI 5 mild cognitive
impairment.
Unstandardized b values, standard errors, and p values are listed for each model covariate.
aSignificant effect (p , 0.05).
bMarginally significant effect (p , 0.10).
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identified in older participants, we also found that
elevated PGRS was modestly associated with HV in
healthy individuals under age 35 years, an age at
which Ab accumulation is very unlikely.35,36 Thus,
PGRS may also have an effect via non-Ab pathways.
It has become increasingly clear that additional factors

beyond Ab influence the emergence of clinical symp-
toms of AD dementia, which may include develop-
mental factors, the spread of tau into neocortex, or
inflammatory responses.37–39 The involvement of
non-Ab processes in AD risk may explain why a por-
tion of older individuals are able to function normally

Figure 3 Polygenic risk score (PGRS) (residuals) vs b-amyloid (Ab) in older participants without dementia

The association between PGRS and Ab was examined across 2 independent samples of older individuals without dementia:
(A) ADNI1 with CSF (n 5 272) and (B) ADNI2 with florbetapir PET imaging (n 5 505). Plotted values are adjusted for model
covariates.

Figure 2 Polygenic risk score (PGRS) vs cognition and hippocampus volume in older participants without dementia

PGRS vs baseline and longitudinal change in memory (A, D), executive function (EF) (B, E), and hippocampus volume (C, F). Baseline associations are shown in
A–C, while longitudinal effects are shown in D–F. Plotted values are residualized by model covariates. aHV 5 adjusted hippocampus volume.
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despite high quantities of Ab, which has important
implications for mechanisms of disease resilience.

Our study has several limitations. Given the rela-
tively small sample size, it will be important to repli-
cate these findings in independent samples. The
associations identified between PGRS and AD
markers were small, accounting for 1.0%–3.2% of
the variance among the older group without demen-
tia, and only 0.2% of the variance in HV within the
younger group. However, these effect sizes are con-
sistent with other biomarker studies assessing com-
mon genetic variants among older40 and younger
participants.41 The smaller sample size within ADNI
may have provided insufficient power to detect a sta-
tistically significant effect on Ab in the ADNI1 CSF
sample. However, examination of the larger florbeta-
pir ADNI dataset provided support for an association
between PGRS and Ab among individuals without
dementia.
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