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Heritability, defined as the proportion of phenotypic variation
attributable to genetic variation, provides important informa-
tion about the genetic basis of a trait. Existing heritability anal-
ysis methods do not discriminate between stable effects (e.g.,
due to the subject’s unique environment) and transient effects,
such as measurement error. This can lead to misleading assess-
ments, particularly when comparing the heritability of traits that
exhibit different levels of reliability. Here, we present a linear
mixed effects model to conduct heritability analyses that explicitly
accounts for intrasubject fluctuations (e.g., due to measurement
noise or biological transients) using repeat measurements. We
apply the proposed strategy to the analysis of resting-state fMRI
measurements—a prototypic data modality that exhibits variable
levels of test–retest reliability across space. Our results reveal
that the stable components of functional connectivity within and
across well-established large-scale brain networks can be consid-
erably heritable. Furthermore, we demonstrate that dissociating
intra- and intersubject variation can reveal genetic influence on a
phenotype that is not fully captured by conventional heritability
analyses.

heritability | repeat measurements | resting-state fMRI |
functional connectivity | test–retest reliability

Heritability is defined as the proportion of phenotypic vari-
ation that can be explained by genetic variation among

individuals in a population (1). It is a fundamental concept in
population and statistical genetics, providing basic but important
information about the genetic underpinnings of a trait. The her-
itability of a large number of human complex traits across a wide
range of the phenotypic spectrum has been documented, using
classical twin or pedigree designs (2–4), or statistical methodolo-
gies developed more recently that allow for the estimation of her-
itability in large samples of unrelated individuals (5–9).

Statistical models for heritability analysis typically include an
error term (residual) that absorbs the phenotypic variation that
cannot be explained by genetics and common environment. The
residual therefore accounts for unique (subject-specific) environ-
mental effects, measurement error, and intrasubject fluctuation
of the trait due to, for example, biological cycles such as the circa-
dian rhythm. With one measurement for each subject, these fac-
tors cannot be dissociated and are typically modeled jointly as an
independent and identically distributed random variable across
subjects. However, this model imposes at least two problems on
heritability analysis. First, measurement error has a ceiling effect
on heritability estimates; it inflates the total phenotypic variation
and downwardly biases heritability estimates. Second, comparing
the heritability of traits that have different levels of measurement
noise may be misleading.

The issues can be partially resolved if repeat measurements
of a trait are available. Assuming that multiple repeat measure-
ments have been collected for each subject over a period in which
we expect little biologically meaningful change to the trait (i.e.,
the genetic architecture of the trait and the environmental influ-
ences remain largely unchanged during the time period), we can

then distinguish factors that contribute to the intersubject vari-
ation of the phenotype but are stable across repeat measure-
ments (e.g., due to unique environmental effects) from factors
that exhibit intrasubject fluctuation (e.g., measurement error).
Defining heritability as the fraction of the total stable intersub-
ject variation that is attributable to genetic variation removes the
ceiling effect of measurement error and makes the heritability
estimates of traits that have different levels of noise comparable.
To date, however, repeat measurements have rarely been used
this way in heritability estimation. Instead, serial measurements
are typically averaged, yielding one scalar measurement for each
subject such that conventional heritability analysis methods can
be applied. Although averaging repeat measurements cancels
out some measurement error and thus improves the reliability of
the phenotype, it does not dissociate intra- and intersubject vari-
ation and can still lead to the underestimation of the heritability
of a trait in the presence of noise and biological transients.

In this paper, we present a linear mixed effects (LME) model
that can leverage repeat measurements to explicitly dissoci-
ate intra- and intersubject variation of a phenotype and com-
pute heritability with respect to stable intersubject variation.
As a demonstration of application, we investigate the heritabil-
ity of (intrinsic) functional connectivity measurements derived
from resting-state fMRI (rs-fMRI). rs-fMRI is a prototype case
with a substantial amount of measurement noise from multiple
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sources (including thermal, system, and physiological) (10, 11).
Long-range functional connectivity computed from rs-fMRI time
series might span distant brain regions that have dramatically
different levels of measurement error due to the complex spa-
tial pattern of the noise and susceptibility artifacts. Moreover,
the brain is a dynamic system where time-varying fluctuations
in functional connectivity and brain networks and transitions
between different brain states have been observed (12). There-
fore, part of the variation in rs-fMRI–derived measurements can
be attributed to a nontransient component for each subject, and
another portion of the variation might be due to transient neu-
ronal activity or other factors that influence coupling between
regions and can change between scanning sessions of a subject.

Recent studies have also shown that individual differences in
functional connectivity are heterogeneous across the cortex after
accounting for intrasubject variation, with greater variability in
high-level association cortex (e.g., prefrontal cortex and the infe-
rior parietal lobule) and lesser variability in unimodal regions
(e.g., visual cortex and somatosensory cortex), pointing to a poten-
tial relationship between the spatial distribution of intersub-
ject variation in functional connectivity and brain evolution and
development (13). Disentangling the nontransient, stable compo-
nent of rs-fMRI measurements from the transient signal across
repeat scans and estimating the stable heritability might thus
improve our understanding of the genetic basis of brain function.

Although a handful of studies have investigated the genetic
basis of the functional connectome and functional brain net-
works (14–16), to our knowledge none has addressed intra-
and intersubject variation of rs-fMRI measurements, despite the
fact that repeat scans are commonly collected in rs-fMRI stud-
ies. Here, using rs-fMRI data collected by the Human Con-
nectome Project (HCP) (17) and the Harvard/Massachusetts
General Hospital (MGH) Brain Genomics Superstruct Project
(GSP) (18, 19), we demonstrate that (i) the relative contribu-
tions of intra- and intersubject variation to the total variation of
rs-fMRI–derived functional connectivity measurements are dra-
matically different across space and strongly correlated with test–
retest reliability, (ii) the stable component of functional connec-
tivity (within and between well-established large-scale functional
brain networks) can be substantially heritable, and (iii) dissocia-
tion of intra- and intersubject variation can reveal genetic influ-
ences on the functional architecture of the human brain that are
not detectable by conventional heritability analyses. Our results
provide insights into the genetic basis of brain function and high-
light the importance of accounting for the spatial pattern of mea-
surement noise and transient signals when studying the heritabil-
ity of functional connectivity measurements across brain regions.

Results
We first conducted simulation studies to ensure that the pro-
posed LME model can robustly dissociate intra- and intersubject
variation of a phenotype and accurately estimate heritability due
to intersubject variation using repeat measurements (Supporting
Information). As shown in Fig. S1, the proposed method con-
sistently produced unbiased estimates, whereas results obtained
with the classical model were affected by intrasubject variation.

Next, we sought to characterize the spatial distribution of
intra- and intersubject variation of functional connectivity mea-
surements using real rs-fMRI data. Specifically, we analyzed
582 young and healthy subjects (92 monozygotic twin pairs, 46
dizygotic twin pairs, 250 full siblings, and 56 singletons) from
the HCP and 809 unrelated young and healthy subjects from
the GSP. A previously published and widely validated rs-fMRI–
based parcellation of seven cortical functional networks (visual,
somatomotor, dorsal attention, ventral attention/salience, limbic,
control, and default network) (18) was split into 51 spatially con-
tiguous regions across the two hemispheres (Fig. 1A). For each
rs-fMRI scan, spatially normalized Pearson correlation coeffi-
cients between preprocessed time series at pairs of cortical loca-
tions were summarized within and across these network regions
into a 51× 51 matrix. When averaging across subjects, the func-

tional connectivity matrices computed from both the HCP and
GSP sample showed clear modular structures (Fig. 1B). In par-
ticular, negative correlations between attention networks and the
default mode network (DMN) can be clearly observed.

We fit the proposed LME model that partitions the total phe-
notypic variation into intersubject variation (the stable, nontran-
sient component) and intrasubject variation (including the unsta-
ble, transient component and measurement error), using the
51× 51 functional connectivity matrices computed for each rs-
fMRI session in the HCP sample. Fig. 2A shows that the rela-
tive contributions of intra- and intersubject variation are highly
heterogeneous across space. The spatial pattern of intersubject
variation is similar to and highly correlated with (Pearson’s r =
0.845) the test–retest reliability of functional connectivity mea-
surements estimated using a subset of the HCP subjects that were
sampled from different families and had repeat rs-fMRI scans
(Fig. 2 B and C, Left). The intersubject variation estimated in
HCP also agrees with the test–retest reliability of functional con-
nectivity measurements estimated using the independent GSP
sample (Pearson’s r =0.548; Fig. 2 B and C, Right). Within-
network functional connectivity shows larger intersubject varia-
tion and higher test–retest reliability than between-network con-
nectivity in general. Yet, there are certain exceptions, such as
the connectivity between the control and default network, which
is also highly reliable. There is strong agreement between the
spatial patterns of test–retest reliability estimated using the HCP
and GSP.

The heritability of the stable, nontransient component of rs-
fMRI–derived functional connectivity measurements, defined
as the proportion of intersubject variation attributable to the
genetic variation in the population, is substantial for many pairs
of brain regions (Fig. 3, Right) and is consistently higher than
conventional heritability estimates (the proportion of the total
phenotypic variation attributable to genetic variation; Fig. 3,
Left) computed by averaging repeat measurements for each indi-
vidual and applying the classical ACE model (A, additive genet-
ics; C, common environment; E, unique environment). Overall,
within-network functional connectivity measurements for all of
the seven functional networks are significantly heritable, but the
nontransient heritability estimates are consistently larger than
the conventional heritability estimates (Fig. 3B).

Finally, we conducted an analysis of the functional connectiv-
ity profile seeded in the posterior cingulate cortex (PCC), a core
region of the DMN, in the HCP sample. The PCC is strongly
positively correlated with other regions in the DMN such as
the medial prefrontal cortex, inferior parietal lobule, and lat-
eral temporal cortex, and negatively correlated with the dorsal
and ventral attention networks (Fig. 4A). Functional connectivity
within the DMN shows high test–retest reliability and low intra-
subject variation, whereas regions not coupled with the PCC such
as the motor and somatosensory cortex and visual cortex show
lower test–retest reliability and higher intrasubject variation (Fig.
4 B and F). The heritability maps of the functional connectivity
profile estimated by the classical ACE model (Fig. 4C) and the
proposed LME model (Fig. 4D) have similar patterns in general;
both clearly show that functional connectivity within the DMN
is highly heritable. Contrasting the two heritability maps reveals
that the proposed LME method produces substantially higher
heritability estimates than the classical ACE model in the atten-
tion networks and the visual cortex (Fig. 4E), indicating that the
functional connectivity between PCC and these regions might be
under strong genetic influence after accounting for the unstable,
transient signal in functional connectivity measurements.

Discussion
In this paper we presented an LME model that can explic-
itly dissociate stable, nontransient intersubject variation (e.g.,
due to long-lasting unique environmental effects) and transient,
intrasubject measurement-to-measurement variation (e.g., due
to measurement noise and state-varying factors) of a phenotype
using repeat measurements. By defining nontransient heritability
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Fig. 1. Functional connectivity measurements between pairs of 51 brain regions. (A) Surface representation of the seven-network parcellation (18), which
can be split into 51 spatially contiguous regions across the two hemispheres. (B) Average functional connectivity measurements between pairs of the 51
brain regions across subjects in the HCP sample (Left) and GSP sample (Right).

as the proportion of the stable intersubject variation that can be
explained by genetic variation, we can correct for the effect of
intrasubject fluctuations on heritability estimates and put pheno-
types with different levels of measurement noise on equal footing
to assess their comparative heritability.

The proposed statistical model is an extension to the classical
LME model for longitudinal data with a random intercept (20,
21), which is used in a wide range of fields to account for intra-
and intersubject variation in repeat measurements. Incorporat-
ing genetic and environmental effects into the model naturally
introduces a covariance structure across subjects, in contrast to
assuming independent samples in conventional longitudinal data
analysis. The proposed model can also be viewed as an extension
to the classical ACE model, which is widely used in heritability
analysis. Specifically, in addition to the genetic and environmen-
tal factors, a random effect that captures intrasubject variation
is included. With repeat measurements, all random effects in the
model have different covariance structures and thus the model is
identifiable and can be fitted using the restricted maximum like-
lihood (ReML) estimation (22). Similar attempts to correct for
measurement error in heritability analysis with repeat measure-
ments have been made in twin studies using structural equation
modeling (23, 24). Although we demonstrated our method using
an extended twin sample collected by the HCP, the model can
be easily applied to heritability analysis in unrelated individuals,
where the genetic similarity matrix is empirically estimated from
genome-wide SNPs (5, 6).

The proposed method can be applied to any phenotype on
which repeat measurements are available. In particular, with the
recent convergence of imaging, genomics, health informatics,
and digital phenotyping technologies, the model has the poten-
tial to dissect the genetic basis of a wide range of novel, infor-
mative, but noisy phenotypes on which repeat measurements can
be collected, such as gene expression, wearable sensor data, and
web-based cognitive and behavioral assessments. We have used
functional connectivity measurements computed from rs-fMRI
as an example because repeat scans are often collected in fMRI
studies, and it is known that rs-fMRI features often contain a
substantial amount of noise from multiple sources and typically

have lower test–retest reliability than morphological measure-
ments derived from structural brain MRI scans. We confirmed
that for some functional connectivity more than 70% of the
phenotypic variation can be attributed to transient intrasubject
variation. More importantly, the contribution of the stable, non-
transient component of functional connectivity to the total phe-
notypic variation varies dramatically across space and is strongly
correlated with the test–retest reliability of the measurements.
For example, connectivity measurements between the limbic
network (e.g., the temporal pole and orbitofrontal regions) and
other brain regions have much smaller stable intersubject com-
ponents and relatively lower test–retest reliability (19), likely due
to susceptibility artifacts associated with sinus and temporal bone
regions (25, 26). Head motion might also have systematic influ-
ences on rs-fMRI–derived measurements and exert differential
effects on distant and regional functional couplings (27–29). The
heterogeneous distribution of the spatial noise and confounds
in rs-fMRI underscores the importance of accounting and cor-
recting for intrasubject variation when comparing the heritability
of functional connectivity measurements across space. Although
the reliability of rs-fMRI signals depends on the scanner type and
imaging sequence, we observed largely consistent spatial patterns
of test–retest reliability between the HCP and GSP samples, sug-
gesting that a large portion of the measurement-to-measurement
variation might be dominated by factors shared across imaging
sites, scanning protocols, and samples.

Previous studies have shown that resting-state functional con-
nectivity measurements within the DMN are significantly her-
itable (14). Graph theoretical measures that index topological
characteristics and communication efficiency of intrinsic brain
networks were also found to be heritable in both adults (15)
and normally developing children (30). We have demonstrated
in the present study that the stable, nontransient components
of rs-fMRI–derived functional connectivity measurements are
highly heritable between many brain regions, and all functional
networks we examined have substantially heritable within-
network couplings. The heritability analysis of the functional
connectivity profile seeded in the PCC, a core region of the
DMN (31), further confirmed that the intrinsic connectivity of
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Fig. 2. Intra- and intersubject variation of the resting-state functional
connectivity measurements. (A) Proportion of the total phenotypic vari-
ation attributable to intrasubject measurement-to-measurement variation
(Left) and stable, nontransient intersubject variation (Right) estimated in
the HCP sample. (B) Test–retest reliability of the functional connectivity mea-
surements estimated using the HCP sample (Left) and GSP sample (Right).
(C) Test–retest reliability of the functional connectivity measurements esti-
mated in the HCP (Left) and GSP (Right) plotted against the proportion of
phenotypic variance explained by the intersubject variation estimated in the
HCP sample.

large-scale brain networks is under strong genetic influence.
Moreover, using the proposed LME model, we identified that
several regions that are weakly correlated (e.g., the visual cortex)
or negatively correlated with PCC (e.g., the attention networks)
exhibit highly heritable nontransient functional couplings with
the seed. This is in contrast with the picture offered by a con-
ventional heritability analysis, in which heritability estimates of
these weak or negative couplings did not stand out from the back-
ground, likely because these regions are not consistently coacti-
vated across subjects during rest, and the associated functional
connectivity measurements comprise large transient components
that vary from scan to scan. Our analyses provide heritability esti-
mates of functional connectivity for multiple brain networks. Our
results indicate that the proposed method has the potential to
unveil the genetic basis of the functional connectome that can-
not be fully captured by conventional heritability analyses.

There are some technical limitations of the proposed method.
First, we note that although nontransient heritability estimates
defined with respect to stable intersubject variation are typi-
cally larger than conventional heritability estimates, the statisti-
cal power (in terms of testing the significance of heritability) will
not necessarily be larger because the proposed model includes
one more parameter than the ACE model and thus the uncer-
tainties in the point estimates of variance component parame-
ters might increase. In fact, there may be a substantial power
loss when applying the proposed model in a setting of moderate
sample size, small number of repeat measurements, and large

measurement error. In this case, the classical model is recom-
mended for more robust model fitting and statistical inferences.
Second, the proposed method cannot distinguish artifacts that
are correlated with variables of interest (e.g., genetic and envi-
ronmental factors) and/or manifest as stable intersubject vari-
ation (e.g., anatomical variability that contributes to functional
connectivity estimates). More sophisticated models or better pre-
processing techniques are needed to identify and remove this
type of noise and anatomical confound. Finally, it is important
to emphasize that the proposed model merely examines stable
intersubject phenotypic variation, while treating temporal varia-
tion as a nuisance. Future work is needed to extend the proposed
strategy to longitudinal settings, such as during development or
progressive disease, where the temporal dynamics of a measure-
ment is the phenotype of interest.

Methods
The Model. We consider the following LME model for repeat measurements
(20, 21):

yij = x>
ij β + γi + εij , i = 1, 2, · · · , m, j = 1, 2, · · · , ni , [1]

where m is the total number of subjects; yij is the j-th repeat measurement
from the i-th subject, and the number of repeat measurements ni can be
subject-specific; xij is a q× 1 vector of covariates such as age and sex; β

is a q× 1 vector of unknown fixed (population-level) effects; γi is a ran-
dom intercept, which describes subject-specific deviation from the popula-
tion mean; and εij denotes intrasubject measurement-to-measurement vari-
ation (e.g., measurement error or the unstable, transient component) of yij

and is assumed to be independent of the random effects and independent
between repeat measurements. We assume that γ = [γ1, · · · , γm]> can be
partitioned into the sum of additive genetic effect g, common (or shared)
environment c and unique (subject-specific) environment e, and their
covariance structures take the following forms:

g ∼ N(0, σ2
AK), c ∼ N(0, σ2

CΛ), e ∼ N(0, σ2
E Im), [2]

where σ2
A, σ2

C , and σ2
E are the additive genetic variance, common envi-

ronmental variance, and unique environmental variance, respectively; K is

Fig. 3. Heritability of functional connectivity measurements. (A) Conven-
tional heritability estimates of functional connectivity measurements com-
puted by averaging repeat measurements for each subject and applying
the classical ACE model (Left) and the heritability estimates of the sta-
ble, nontransient component of functional connectivity computed using the
proposed model (Right). (B) Average of the heritability estimates of within-
network functional connectivity measurements for each of the seven func-
tional networks. Heritability was estimated using the proposed method
(black) and the classical ACE model (red). The standard errors shown were
estimated by a block-jackknife procedure.
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Fig. 4. Analysis of the functional connectivity profile seeded at PCC in
the HCP sample. (A) Average functional connectivity profile across subjects.
(B) Test–retest reliability of the functional connectivity profile. (C) Heritabil-
ity estimates of the connectivity profile computed using the classical ACE
model. (D) Heritability estimates of the stable, nontransient component of
the connectivity profile computed using the proposed method. (E) Differ-
ence of the heritability estimates computed by the proposed model and
the classical ACE model, with the boundaries of the seven functional net-
works overlaid. (F) Proportion of the total phenotypic variation attributable
to intrasubject variation.

an m×m genetic similarity matrix, Λ is an m×m matrix that quantifies
shared environment between pairs of individuals, and Im is an m×m iden-
tity matrix. In familial studies, K is twice the kinship matrix. The ij-th entry of
the kinship matrix, φij , defines genetic relatedness for subjects i and j, and in
general can be derived from pedigree information. Λ usually reflects house-
hold sharing between pairs of individuals. In the present study, φij = 1/2 for
monozygotic (MZ) twins and φij = 1/4 for dizygotic (DZ) twins and full sib-
lings, and we assume that subjects that have the same parents share the
same environment and the corresponding elements in Λ are one. We fur-
ther assume that εij ∼N(0, σ2

M).
Using matrix notations yi = [yi1, · · · , yini

]>, X i = [xi1, · · · , xini
]>, εi =

[εi1, · · · , εini
]>, and denoting 1ni as a column vector of ni ones, model 1

can be written as

yi = X iβ + 1niγi + εi , i = 1, 2, · · · , m. [3]

We can further stack the data from all subjects and write model 3 as

y = Xβ + Tγ + ε, γ = g + c + e, [4]

where y = [y>
1 , · · · , y>

m ]>, X = [X>
1 , · · · , X>

m ]>, T = blkdiag{1n1 , · · · , 1nm}
is a block diagonal matrix of size n×m, n =

∑m
i=1 ni is the total number of

measurements, and ε= [ε>1 , · · · , ε>m ]>. The covariance matrix of y can be
calculated as

cov[y] = Tcov[γ]T>
+ cov[ε] = σ

2
ATKT>

+ σ
2
CTΛT>

+ σ
2
ETT>

+ σ
2
MIn. [5]

We then define the nontransient heritability of a trait as the proportion of
the total stable, nontransient intersubject variation that can be explained
by genetic variation in the population:

h2
=

σ2
A

σ2
A + σ2

C + σ2
E

. [6]

Unbiased estimates of the unknown variance component parameters σ2
A,

σ2
C , σ2

E , and σ2
M can be obtained using the ReML algorithm (22).

We note that when no repeat measurement is available, that is, ni = 1
for all i, we have n = m, T = Im, and the model specified in Eqs. 4 and 5
becomes unidentifiable. In this case, e and ε cannot be distinguished and
have to be combined, leading to the classical ACE model and the classical
definition of heritability. With repeat measurements, however, e and ε have
different covariance structures and thus can be modeled separately.

The HCP. The HCP collects imaging, behavioral, and demographic data from
a large population of young and healthy adults. Here we analyzed 582 non-
Hispanic/Latino European subjects (22 to 36 y of age) collected by the WU-
Minn HCP Consortium. These subjects (age, 29.21± 3.47 y; female, 55.84%)
come from 248 families and comprise 92 MZ twin pairs, 46 DZ twin pairs,
250 full siblings, and 56 singletons (single-birth individuals without siblings).
Further details about the recruitment process and imaging data acquisition
can be found in refs. 17 and 32–34.

The Brain GSP. The Harvard/MGH Brain GSP is a neuroimaging and genetics
study of brain and behavioral phenotypes. Here we analyzed 809 unrelated
young adults (18 to 35 y of age) of non-Hispanic European ancestry with no
history of psychiatric illnesses or major health problems (age, 20.84± 2.77 y;
female, 55.25%; right-handedness, 88.38%). The study was approved by the
Partners Health Care IRB and the Harvard University Committee on the Use
of Human Subjects in Research. All participants provided written informed
consent in accordance with guidelines set by the IRB. For further details
about the recruitment process, participants, and imaging data acquisition,
we refer the reader to refs. 18 and 19.

Preprocessing of rs-fMRI Data. We used MSM-All [areal feature-based Mul-
timodal Surface Matching algorithm (35)] registered and ICA+FIX [FMRIB’s
ICA-based X-noiseifier (36)] denoised rs-fMRI data distributed by the HCP.
Among the 582 subjects we analyzed, 555 subjects had two rs-fMRI sessions
on separate days and 27 subjects had one rs-fMRI session. Each rs-fMRI ses-
sion consists of two scans of ∼15 min each with alternate phase encod-
ing directions (left to right and right to left, respectively). For each scan,
we smoothed the MSM-All registered and FIX denoised time series using a
surface-based Gaussian kernel with 6-mm FWHM and resampled the data to
FreeSurfer’s fsaverage5 representation, which consists of nvtx = 20,484 ver-
tices across the two hemispheres. For each rs-fMRI session, we then tempo-
rally standardized (subtracted the mean and divided by SD) and concate-
nated the two scans.

The preprocessing of the GSP data followed the procedures outlined
in ref. 18. All 809 GSP subjects had two rs-fMRI scans of approximately
6 min each, acquired on the same model 12-channel head coil. Both scans
had slice-based temporal signal-to-noise ratio greater than 100. We spa-
tially smoothed each scan using a surface-based Gaussian kernel with 6-mm
FWHM and resampled the time series to fsaverage5.

Computation of Functional Connectivity. For each HCP session and GSP scan
we computed an nvtx× nvtx Pearson correlation coefficient matrix using
the preprocessed time series. The correlation coefficients were then spa-
tially standardized into z-scores to make functional connectivity strength
between each pair of vertices comparable across subjects. The rs-fMRI–based
seven-network parcellation of the cortex obtained in ref. 18 was split into
51 spatially contiguous regions across the two hemispheres, and the z-scores
were averaged within and across network regions into a 51× 51 matrix.

Test–Retest Reliability. In the HCP sample, test–retest reliability of the
network-level functional connectivity measurements (i.e., each average
z-score in the 51× 51 matrix) was computed as the Pearson correlation coef-
ficient of z-scores from 247 unrelated subjects who were sampled from dif-
ferent families and had repeat rs-fMRI sessions. In the GSP sample, test–
retest reliability was computed similarly using all of the 809 subjects.

Heritability Analysis. We estimated the nontransient heritability of each rs-
fMRI–derived functional connectivity measurement in the 51× 51 matrix in
the HCP sample using our proposed LME model as specified in Eqs. 4 and 5
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and the definition of heritability in Eq. 6, adjusting for age, sex, and hand-
edness as fixed-effect covariates. To benchmark our results, for each entry
in the 51× 51 matrix we averaged measurements from repeat sessions to
obtain one scalar measurement for each subject and then estimated the
heritability using the classical ACE model, adjusting for the same covariates.

We averaged heritability estimates of within-network functional connec-
tivity measurements to obtain an overall heritability estimate for each of
the seven functional networks. To estimate the variance of the overall her-
itability estimate we used a block-jackknife procedure whereby each time
one family was left out and the overall heritability was reestimated using
the subsample. This procedure was repeated for all of the nfam = 248 fam-
ilies to yield the jackknife heritability estimates ĥ2

k, k = 1, 2, · · · , nfam. The
variance of the overall heritability estimate was then estimated as in ref. 37:

var
[
ĥ2
]
=

nfam − 1

nfam

nfam∑
k=1

(
ĥ2

k − ĥ2
•

)2
, [7]

where ĥ2
• =

∑nfam
k=1 ĥ2

k/nfam.

Analysis of the PCC Seed Map. We used the MNI coordinates −3, −49, 25
reported in ref. 18 as the seed location in PCC and found the vertex (MNI
coordinates−2.917,−48.487, 24.970) in the fsaverage5 system that has the
shortest Euclidean distance to the seed. For each subject, the row in the
nvtx× nvtx spatially standardized correlation coefficient matrix that corre-
sponds to the selected vertex was then used as the functional connectivity
profile of PCC. The classical ACE model and the proposed LME model were

used to estimate the heritability for each of the elements in the functional
connectivity profile in the HCP sample. Surface maps of the heritability esti-
mates were smoothed using a Gaussian kernel with 12-mm FWHM before
visualization.
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